从磁流体方程到三场方程

在笛状近似(Flute reduction)的情况下,$k_\parallel \sim \epsilon k_\perp$。其中$\epsilon$是小量,此时可忽略平行方向的磁场扰动。

此时除了平衡量,扰动量之外,扰动量也分为一阶和二阶量。
分析时一阶量不可忽略,二阶量可忽略。

比如$\bm{u} \simeq \bm{u}_\perp = \bm{b} \cp \qty(\bm{u} \cp \bm{b})$
只关注垂直磁场方向,为一阶扰动量;
而$\bm{b} \cdot \bm{u}$为二阶量,可忽略。

涡量方程

将$\bm{b} \cdot \curl$作用在动量方程上,则有:

$$
\bm{b} \cdot \curl \qty(\rho \dv{\bm{u}}{t} + \div \bm\Pi) =
– \bm{b} \cdot \curl \qty(\grad P)
+ \bm{b} \cdot \curl \qty(\bm{J} \cp \bm{B})
$$

$$
\bm{f} = \rho \dv{\bm{u}}{t} + \div \bm \Pi
$$

且右侧第一项为零,则有

\begin{equation}
\begin{aligned}
\bm{b} \cdot \curl \bm{f} &=
\bm{b} \cdot \curl \rho \dv{\bm{u}}{t}
= \bm{b} \cdot \curl \qty(\bm{J} \cp \bm{B}) \\
&= \frac{1}{B} \bm{B} \cdot \curl \qty(\bm{J} \cp \bm{B}) \\
&= \frac{1}{B} \div \qty[\qty(\bm{J} \cp \bm{B}) \cp \bm{B}]
+ \qty(\bm{J} \cp \bm{B}) \cdot \curl \bm{B} \\
&= \frac{1}{B} \div \qty[\qty(\bm{J} \cp \bm{B}) \cp \bm{B}]
+ \qty(\bm{J} \cp \bm{B}) \cdot \mu_0 \bm{J} \\
&= \frac{1}{B} \div \qty[B^2\qty(\bm{J} \cp \bm{b}) \cp \bm{b}] \\
&= \frac{1}{B} \div \qty{B^2\qty[\qty(\bm{J} \cdot \bm{b})\bm{b} – \bm{J}]} \\
&= \frac{1}{B} \div \qty[B^2\qty(\frac{J_\parallel}{B}\bm{B} – \bm{J})] \\
\end{aligned}
\end{equation}

$\div$分别对每一项的作用:

$$
\begin{aligned}
\bm{b} \cdot \curl \bm{f}
=& \frac{J_\parallel}{B} \bm{b} \cdot \grad B^2
+ B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ J_\parallel \div \bm{B} \\
& – \frac{\bm{J}}{B} \cdot \grad B^2
– B \div \bm{J}
\end{aligned}
$$

磁场无源,所以右侧第三项为零。
同时$\mu_0\bm{J} = \curl \bm{B}$,可知右侧第五项也为零。剩下的合并同类项有

\begin{equation}
\label{eq:vorticity_mid}
\begin{aligned}
\bm{b} \cdot \curl \bm{f}
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ \frac{J_\parallel}{B} \bm{b} \cdot \grad B^2
– \frac{\bm{J}}{B} \cdot \grad B^2 \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{\bm{J}_\perp}{B} \cdot \grad B^2 \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{\bm{J}_\perp}{B} \cdot \grad_\perp B^2 \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{1}{B^2} \bm{b} \cp \qty(\bm{J} \cp \bm{B}) \cdot \grad_\perp B^2 \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{2}{B} \bm{b} \cp \qty(\bm{J} \cp \bm{B}) \cdot \grad_\perp B
\end{aligned}
\end{equation}

此时需要把$\grad P$重新引入回来,观察$\bm{J} \cp \bm{B}$项有下面两个式子:

\begin{equation*}
\begin{aligned}
\bm{J} \cp \bm{B}
&= \frac{1}{\mu_0} \qty(\curl \bm{B}) \cp \bm{B} \\
&= \frac{B^2}{\mu_0} \qty(\curl \bm{b}) \cp \bm{b}
+ \frac{B}{\mu_0}\qty(\grad B \cp \bm{b}) \cp \bm {b} \\
&= \frac{B^2}{\mu_0} \bm{b} \cdot \grad \bm{b}
+ \frac{B}{\mu_0}\qty(\grad B \cp \bm{b}) \cp \bm {b} \\
&= \frac{B^2}{\mu_0} \bm{\kappa}
– \frac{B}{\mu_0} \grad_\perp B
\end{aligned}
\end{equation*}

同时有:

\begin{equation*}
\begin{aligned}
\bm{J} \cp \bm{B}
&= \grad P + \bm{f}
\end{aligned}
\end{equation*}

将$\bm{J} \cp \bm{B}$的表达式代入\eqref{eq:vorticity_mid}有:

\begin{equation*}
\begin{aligned}
\bm{b} \cdot \curl \bm{f}
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{2}{B} \bm{b} \cp
\qty(\frac{B^2}{\mu_0} \bm{\kappa} – \frac{B}{\mu_0} \grad_\perp B)
\cdot \grad_\perp B \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
– \frac{2}{B} \bm{b} \cp
\qty(\frac{B^2}{\mu_0} \bm{\kappa})
\cdot \frac{\mu_0}{B}
\qty[\frac{B^2}{\mu_0} \bm{\kappa}
– \qty(\grad P + \bm{f})] \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ \frac{2 \mu_0}{B^2} \bm{b} \cp
\qty(\frac{B^2}{\mu_0} \bm{\kappa})
\cdot \qty(\grad P + \bm{f}) \\
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ 2 \bm{b} \cp \bm{\kappa} \cdot \grad P
+ 2 \bm{b} \cdot \bm{\kappa} \cp \bm{f} \\
\end{aligned}
\end{equation*}

最后得到

\begin{equation*}
\begin{aligned}
\bm{b} \cdot \qty(\curl \bm{f} – 2 \bm{\kappa} \cp \bm{f})
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ 2 \bm{b} \cp \bm{\kappa} \cdot \grad P \\
\end{aligned}
\end{equation*}

其中左侧主要是第一项为主,定义涡量

$$
U \equiv \bm{b} \cdot \curl \bm{u}
$$

可以得到涡量方程

\begin{equation}
\label{eq:vorticity_1}
\begin{aligned}
\rho \dv{U}{t}
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ 2 \bm{b} \cp \bm{\kappa} \cdot \grad P \\
\end{aligned}
\end{equation}

势能方程

为了推导出标量方程,需要使用磁矢势$\bm{A}$和电标量势$\phi$来替换原电磁方程。

\begin{equation}
\label{eq:potential_B}
\begin{aligned}
\bm{B} &= \curl \bm{A} \\
\end{aligned}
\end{equation}

\begin{equation}
\label{eq:potential_E}
\begin{aligned}
\bm{E} &= – \grad \phi – \pdv{\bm{A}}{t}
\end{aligned}
\end{equation}

对式\eqref{eq:potential_B},将磁矢势沿磁场方向分解

$$
\bm{B} = \curl \qty(A_\parallel \bm{b_0}) + \curl \bm{A}_\perp
$$

右边第一项垂直与磁场方向,第二项平行于磁场方向。
由笛状近似,平行磁场方向为高阶小项,$\bm{B_1} \perp \bm{B_0}$,同时用$\psi = A_\parallel / B_0$来代替$A_\parallel$:

\begin{equation}
\label{eq:B_1}
\begin{aligned}
\bm{B_1} &= \curl \psi \bm{B_0} \\
&= \psi \curl \bm{B_0} + \grad \psi \cp \bm{B_0} \\
& \simeq \grad \psi \cp \bm{B_0}
\end{aligned}
\end{equation}

进一步由式\eqref{eq:potential_E},笛状近似下

$$
E_\parallel = – \nabla_\parallel \phi – \pdv{A_\parallel}{t} = – \nabla_\parallel \phi – B_0\pdv{\psi}{t} = 0
$$

所以有:

\begin{equation}
\label{eq:vorticity_2}
\begin{aligned}
\pdv{\psi}{t} = – \frac{1}{B_0}\nabla_\parallel \phi
\end{aligned}
\end{equation}

其中

\begin{equation}
\label{eq:nabla_parallel}
\begin{aligned}
\nabla_\parallel \equiv \bm{b} \cdot \grad
&= \frac{\bm{B_0} + \bm{B_1}}{B_0 + B_1} \cdot \grad \\
&\simeq \frac{\bm{B_0} + \bm{B_1}}{B_0} \cdot \grad \\
&= \bm{b_0} \cdot \grad + \grad \psi \cp \bm{b_0} \cdot \grad\\
&= \bm{b_0} \cdot \grad – \bm{b_0} \cp \grad \psi \cdot \grad\\
&= \bm{b_0} \cdot \grad – \bm{b_0} \cdot \grad \psi \cp \grad\\
\end{aligned}
\end{equation}

涡量电势方程

假设零阶速度(本底速度)$\bm{u_0} = 0$,一阶速度为电漂移速度$\bm{u_1} = \bm{u_E}$,
由欧姆定律有:

\begin{equation*}
\begin{aligned}
\bm{E_1}
&= – \qty(\bm{u_1} \cp \bm{B_0}) \\
\bm{E_1} \cp \bm{B_0}
&= \bm{B_0} \cp \qty(\bm{u_1} \cp \bm{B_0}) \\
&= B_0^2 \bm{u_1} – \qty(\bm{u_1} \cdot \bm{B_0})\bm{B_0}
\end{aligned}
\end{equation*}

根据笛状近似,$\bm{u_1} \cdot \bm{B_0} \simeq 0$,另外用静电势$\phi$表示$E_1$有:

\begin{equation*}
\begin{aligned}
\bm{u} \simeq \bm{u_1} = \bm{u_E} = \frac{\bm{b}}{B} \cp \grad \phi
\end{aligned}
\end{equation*}

带入涡量方程表达式有

\begin{equation}
\label{eq:vorticity_mid2}
\begin{aligned}
U &= \bm{b} \cdot \curl \bm{u} \\
&= \bm{b} \cdot \curl \qty(\frac{\bm{b}}{B} \cp \grad \phi) \\
&= \bm{b} \cdot \curl \qty(\frac{\bm{b}}{B} \cp \grad \phi) \\
&= \bm{b} \cdot
\qty[
\frac{\bm{b}}{B}\div\grad \phi
– \grad \phi \qty(\div \frac{\bm{b}}{B})
+ \qty(\grad \phi \cdot \grad) \frac{\bm{b}}{B}
– \qty(\frac{\bm{b}}{B} \cdot \grad) \grad \phi
]
\end{aligned}
\end{equation}

在笛状近似下$k_\parallel \ll k_\perp$,平行方向$\bm{b} \cdot \grad$被忽略
同时$\bm{b}$作为平衡量求导后$\grad \bm{b}$相比于第一项$\nabla^2_\perp$可以忽略不计:

\begin{equation}
\label{eq:vorticity_3}
\begin{aligned}
U = \frac{1}{B} \nabla_{\perp}^2 \phi
\end{aligned}
\end{equation}

电流方程

由式\eqref{eq:B_1},可推导出电流表达式为:

\begin{equation*}
\begin{aligned}
\bm{J} &= \bm{J_0} + \frac{1}{\mu_0}\curl \bm{B_1} \\
&= \bm{J_0} + \frac{1}{\mu_0}\curl \qty(\grad \psi \cp \bm{B_0}) \\
&= \bm{J_0} + \frac{1}{\mu_0} \qty(\grad \cdot \bm{B_0})\grad \psi
– \frac{\bm{B_0}}{\mu_0} \nabla^2 \psi
+ \frac{1}{\mu_0} \qty(\bm{B_0} \cdot \grad) \grad \psi
– \frac{1}{\mu_0} \grad \psi \cdot \grad\bm{B_0}
\end{aligned}
\end{equation*}

类似涡量电势方程的推导\eqref{eq:vorticity_mid2},忽略平行方向的微分(右边第二、四、五项),并且取平行方向的分量有:

\begin{equation}
\label{eq:vorticity_4}
\begin{aligned}
J_\parallel = J_{\parallel 0} – \frac{1}{\mu_0} B_0 \nabla^2_\perp \psi
\end{aligned}
\end{equation}

压强方程

用守恒方程与质量方程可推导出

$$
\pdv{t} P + \bm{u} \cdot \grad P
+ \gamma P
\div \bm{u} = 0
$$

忽略第三项,将电漂移速度带入有:

\begin{equation}
\label{eq:vorticity_5}
\begin{aligned}
\pdv{t} P = – \frac{\bm{b_0}}{B_0} \cp \grad \phi \cdot \grad P
\end{aligned}
\end{equation}

总结

根据上面的推导,我们得到了三场方程如下:

\begin{equation}
\label{eq:3field}
\begin{aligned}
\rho \dv{U}{t}
&=
B^2 \bm{b} \cdot \grad \frac{J_\parallel}{B}
+ 2 \bm{b} \cp \bm{\kappa} \cdot \grad P \\
\pdv{\psi}{t} &= – \frac{1}{B_0}\nabla_\parallel \phi \\
\pdv{t} P &= – \frac{\bm{b_0}}{B_0} \cp \grad \phi \cdot \grad P \\
U &= \frac{1}{B} \nabla_{\perp}^2 \phi \\
J_\parallel &= J_{\parallel 0} – \frac{1}{\mu_0} B_0 \nabla^2_\perp \psi \\
\end{aligned}
\end{equation}

文章标题:从磁流体方程到三场方程
文章作者:Myron
转载链接:https://sunwaybits.tech/from-the-magnetohydrodynamic-equations-to-the-3field-model-in-flute-reduction.html
暂无评论

发送评论 编辑评论


				
😃
😄
😁
😆
😅
😂
🤣
🥲
😊
😇
🙂
🙃
😉
😌
😍
🥰
😘
😗
😙
😚
😋
😛
😝
😜
🤪
🤨
🧐
🤓
😎
🥸
🤩
🥳
😏
😒
😞
😔
😟
😕
🙁
😣
😖
😫
😩
🥺
😢
😭
😤
😠
😡
🤬
🤯
😳
🥵
🥶
😱
😨
😰
😥
😓
🤗
🤔
🤭
🤫
🤥
😶
😐
😑
😬
🙄
Emoji
上一篇